

Activated Carbon Filters

• Effective against a wide range of odours

- High adsorption capacity
- Provide cleaner air
- Easy tray access and removal

Better Air Quality Through Better Odour Control

The benefits of activated carbon filters are widely acknowledged by the building services and medical professions. The improved environmental conditions which result from control of odours and noxious vapours range from reduced fatigue, improved efficiency and fewer IAQ complaints to higher employee productivity.

Lower Energy Costs

The use of activated carbon filters in HVAC systems enables fresh air makeup to be kept to a minimum hence reducing heating and cooling costs and saving energy.

Construction

The filters are housed in a rigid sheet metal epoxy coated casing which may be used on their own or assembled into a multi-bank arrangement in the factory or on-site. The honeycombe structured filter cells are loaded with high quality activated carbon obtained from cocunut shells used in pure granular form. Their inherent strength prevents void and gap formation while the high weight of carbon in each cell maximizes filter life. Other benefits include:

- Prolonged contact time ensures high efficiency contaminant removal
- Diffused air flow ensures maximum use of total surface area
- Low pressure drop despite a high carbon weight content
- High adsorption capacity (CTC value of 60%) with

Installation of the cells in the standard range of units is from the front. If the unit forms part of ventilation ductwork the unit can be customized to facilitate installation from the side or bottom. Custom made units can be built on request.

Prefilter

To maximize the efficiency and service life of activated carbon it is necessary to protect it from unnecessary dust and particulate loading. The use of a prefilter such as an AAF AmerGlas panel filter is recommeded as this will prevent a rise in pressure drop and will maintain filtration efficiency.

General Applications

The range of applications are numerous and include airports, hotels, restaurants, office blocks, kitchens, toilets and washrooms, refrigeratated warehouses, hospitals, laboratories, public buildings and industrial plants such as tanneries, breweries, food processing and chemical processing and other industries in which odours and vapours are a problem.

Specific Applications

Different application requirements require different types, grades and weights of carbon. For example, the removal of hydrogen sulphate, sulphur dioxide and ozone requires a specially treated grade of carbon in a custom designed casing as they can cause untold damage to objets d'art in museums and galleries and to sensitive machinery.

Safety

Contaminated active carbon filters can pose a risk to health. It is important to exercise due care and attention when handling them as thay can contain hazardous substances.

Service

Activated carbon cells have to be exchanged at the end of their service life. The life expectancy of a cell can be predicted using laboratory techniques. The Carbon Life Prediction Service provides this service free of charge for non-toxic applications. Used cells returned will be analyzed and their life expectancy predicted. By following the prediction guideline, cell replacement will take place on time and filtration efficiency will be optimized throughout the service life of the filter.

Specification and Dimensions

Minimum carbon weight loading:	40 kg/1.0m ³ /sairflow
Resistance at maximum airflow:	100 Pa (excluding prefilter)
Prefilter resistance:	80 Pa initial, 125 Pa final
Maximum operating conditions:	50 °C and 85% RH
Maximum operating conditions:	50 °C and 85% RH

Model	NV1/*	NV2/*	NV3/*	NV4/*		
Airflow (m ³ /s) No of cells per unit Height (mm) Width (mm) Depth (mm)	0.25 4 305 550	0.50 4 305 960	0.75 4 457 610	1.00 4 610		
<pre>*/P = Prefilter */F Front installation */K = Kitchen grade */B Bottom installation */S = Side installtion</pre>						

Notes:

Cells should not be subjected to operating temperatures above 70°C.
 Airflows greater than 1.0m³/s are achieved by multi-bank arrangements

Adsorption Index

Acetic acid Acetic anhydride Acrylic acid Acrylonitrite Adhesive solvents Alcohols Amyl acetate Amyl ether Aniline Antiseptic odours Benzene Body odours Bromine Burned food odour Buryl acetate	Butyl chloride Butyl ether Butyric acid Camphor Carbon tetrachloride Cheese odour Chlorobenzene Chlorobutadiene Chloroform Cigarette odour Citrous and other fruit odours Cyclohexanol Decane Decomposition odours	Detergent odour Dioxane Dipropyl ketone Disinfectants Ethyl benzene Ethyl silicate Ethylene dichloride Eucalyptole Fertilizer odours Floral scents Heptane Hospital odours Incense Iodine Isophorone	Isopropyl alcohol Isopropyl ether Kerosene Lactic acid Liquid fuels Masking agents Medicinal odours Menthol Mesityloxide Methyl acrylate Methyl butane ketone Naphtha Naphthalene Nicotine Nitrobenzenes	Nitropropane Nonane Octalene Ozone Paint odours Palmitic acid Paper deteriorations Pentanone Perchloroethylene Perfumes, cosmetics Perspiration odour Pet odours Phenol Rancid oils	Rubber odour Sour milk odour Stale odours Styrene monomers Tar odours Tetrachloroethane Toilet odours Toluene Toluidene Trichloroethylene Turpentine Urea Uric acid Valeric acid Varnish fumes
Butyl acetate	Decomposition odours Deodorants	Isophorone	Nitrobenzenes	Rancid oils	Varnish fumes
Butyl alcohol	Deodorants	Isopropyl acetate	Nitroethane	Ripening fruit odour	Vinegar odour

This index provides examples of odour and vapours which, dependent on the concentration, are controlled by activated carbon.

AAF-International B.V. P.O. Box 7928 1008 AC Amsterdam The Netherlands Tel.: + 31 20 549 44 11 Fax: + 31 20 644 43 98

International AAF Offices:

Vienna (A), Montreal (CDN), Dortmund (D), Vitoria (E), Paris (F), Cramlington (GB), Athens (GR), Milan (I), Riyadh (KSA), Mexico (Mex), Amsterdam (NL), Singapore, Istanbul (TR), Louisville, Ky (USA)

AAF Agents:

Copenhagen (DK), Bangalore (IND) Oslo (N), Lisbon (P), Johannesburg (RSA), Dalsjöfors (S), Malmö (S), Helsinki (SF)

AAF has a policy of continuous product research and improvement and reserves the right to change design and specifications without notice